Direnç Nedir?

Direnç, bir elektrik devresinde akım akışına karşı oluşan etkinin ölçümüdür. Direnç ohm olarak ölçülür ve Yunan alfabesindeki omega ...

Direnç Nedir?

Direnç, bir elektrik devresinde akım akışına karşı oluşan etkinin ölçümüdür.
Direnç ohm olarak ölçülür ve Yunan alfabesindeki omega harfi (Ω) ile gösterilir. Ohm, adını gerilim, akım ve direnç arasındaki ilişkiyi inceleyen bir Alman fizikçi olan Georg Simon Ohm'dan (1784-1854) almıştır. Ohm Kanunu'nu formül haline getiren kişi olarak kabul edilir.



Direnç ölçümleri genellikle bir bileşenin veya devrenin durumunu göstermek için alınır. Direnç ne kadar yüksek olursa akım akışı o kadar düşük olur. Direnç anormal derecede yüksekse bunun olası nedenlerinden biri (pek çok diğer nedenle birlikte), yanma veya aşınma nedeniyle hasar gören iletkenler olabilir. Tüm iletkenler belirli bir derecede ısı yayar, dolayısıyla aşırı ısınma genellikle dirençle bağlantılı bir sorundur. Direnç ne kadar düşük olursa akım akışı o kadar yüksek olur. Olası nedenler: Yalıtıcıların nemden veya aşırı ısınmadan hasar görmesi. Isı elemanları ve dirençler gibi birçok bileşenin direnç değeri sabittir. Bu değerler referans için genellikle bileşenin isim levhasında ya da kılavuzlarda basılmıştır.
Bir tolerans gösterilmişse ölçülen direnç değeri belirtilen direnç aralığında olmalıdır. Sabit direnç değerinde herhangi bir değişiklik olması genellikle bir sorun olduğunu gösterir."Direnç" kulağa olumsuz gelebilir ancak elektrikte fayda sağlamak için kullanılabilir.
Örnekler: Akım, ekmek kızartma makinesinin küçük bobinleri arasından geçerken dirençle karşılaşmalı ve ekmeği kızartmaya yetecek kadar ısı üretmelidir. Eski tip akkor lambalar, akımı çok ince filamanlardan geçmeye zorlayarak ışık oluşturmasını sağlar. Çalışır durumdaki bir devrede direnç ölçülemez. Dolayısıyla, sorun giderme teknisyenleri genellikle direnci belirlemek için gerilim ve akım ölçümlerini alır ve Ohm Kanununu uygular:

E = I x R Yani, volt = amp x ohm. Bu formülde R direnci temsil eder. Direnç bilinmiyorsa formül R = E/I (ohm = volt bölü amp) olarak dönüştürülebilir. Örnekler: Elektrikli bir ısıtıcı devresinde direnç, aşağıdaki iki çizimde de gösterildiği gibi, devre gerilimi ve akım ölçülerek ve ardından Ohm Kanunu uygulanarak belirlenir.

Direnç türleri


Elektrik güçlerine göre dirençler ikiye ayrılır:
  1. Büyük güç: (2 W'ın üzerindeki dirençler)
  2. Küçük güç: (2 W’ın altındaki dirençler)

Kullanım gereksinimlerine göre dirençler farklı biçim yapı ve güçlerde üretilirler.
  • Sabit direnç: Sabit direnç değerleri gerektiren uygulamalarda kullanılır. Bu tür dirençlerin değer hassasiyetleri yüksektir.
  • Ayarlı direnç: Değişken direnç değerlerinin gerekli olduğu, hassasiyetin çok önemli olmadığı durumlarda kullanılır.
  • Termistör: Isı etkisi ile değeri değişen direnç.
  • PTC direnç (İng: Positive Temperature Coefficient): Pozitif ısıl katsayılı direnç. Isı etkisi ile değeri artan direnç.
  • NTC direnç (İng: Negative Temperature Coefficient): Negatif ısıl katsayılı direnç. Isı etkisi ile değeri düşen direnç.
  • Foto direnç : Işık etkisi ile değeri değişen direnç.
  1. Sabit dirençler


  2. Sabit dirençler kullanılan malzemeler cinsine göre üçe ayrılır:
    • Film dirençler
    • İnce film dirençler
    • Kalın film ve metal film dirençler
    1. Film dirençler

    2. Film dirençler; cam veya seramik gibi yalıtkan bir taşıyıcı üzerine ince bir tabaka direnç malzemesi olarak üretilirler. Film kalınlığına göre: İnce ve kalın film dirençler olarak sınıflandırılırlar.

    3. İnce film dirençler

    4. Porselen veya seramik vb. silindirik taşıyıcı çubuk üzerine; karbon, nikel-krom, tantal nitrit, metal oksitler gibi direnç malzemeleri ve cam tozu karışımı püskürtme yoluyla kaplanır. Püskürtülen bu direnç maddesi, çok ince bir elmas uçla veya lazer ışınıyla ya da foto-litografik yöntemler belirli bir genişlikte, spiral şeklinde kesilerek şerit sargılar haline dönüştürülür. Şerit sargıdan biri çıkarılarak diğer sargının sarımları arası izole edilir. Şerit genişliği istenilen şekilde ayarlanarak istenilen direnç değeri elde edilir. Toleransları %1'den daha küçük olabilir. Yüksek ısıl kararlılıkları ve düşük toleransları ile birçok uygulamada kullanılabilir.

    5. Kalın film (cermet) dirençler

    6. Kalın film dirençler, seramik ve metal tozları karıştırılarak yapılır. Seramik ve metal tozu karışımı bir yapıştırıcı ile hamur haline getirildikten sonra, seramik bir gövdeye şerit halinde yapıştırılır fırında yüksek sıcaklıkta pişirilir. Bu yöntemle, hem sabit hem de ayarlı dirençler yapılmaktadır. Film dirençlerin toleransları %1-5 civarındadır.

  3. Ayarlı dirençler

  4. Ayarlı dirençler, direnç değerinde duruma göre değişiklik yapılması veya istenilen bir değere ayarlanması gereken devrelerde kullanılırlar. Karbon, telli ve kalın film yapıda olanları vardır.
    Ayarlı dirençler iki ana gruba ayrılır:

    1. Reostalar
    2. Potansiyometreler

    1. Reostalar
    2. Reostalar,iki uçlu ayarlanabilen(değişken direnç) dirençlerdir. Bu iki uçtan birine bağlı olan kayıcı uç, direnç üzerinde gezdirilerek, direnç değeri değiştirilir.
      Reostaların da karbon tipi ve telli tipleri vardır. Sürekli direnç değişimi yapan reostalar olduğu gibi, kademeli değişim yapan reostalarda vardır. Laboratuvarlarda etalon direnç olarak, yani direnç değerlerinin ayarlanmasında ve köprü metodunda direnç ölçümlerinde, değişken direnç gerektiren devre deneylerinde, örneğin diyot ve transistor karakteristik eğrileri çıkarılırken giriş, çıkış gerilim ve akımlarının değiştirilmesinde ve benzeri değişken direnç gerektiren pek çok işlemde kullanılır. Ve reostalar yukarı da da belirttiğimiz gibi ayarlı dirençlere dahildir.

    3. Potansiyometreler
    4. Potansiyometreler üç uçlu ayarlı orta uç, direnç üzerinde gezinebilir. Direnç değerinin değiştirilmesi yoluyla gerilim bölme, diğer bir deyimle çıkış gerilimini ayarlama işlemini yapar. Devre direncinin çok sık değiştirilmesi istenen yerlerde kullanılır. Potansiyometreler radyo gibi cihazlarda sesin açılıp kapanması için kullanılır.
      Potansiyometreler aşağıdaki üç grup altında toplanabilir.

      1. Karbon potansiyometreler
      2. Karbon potansiyometreler, mil kumandalı veya bir kez ön ayar yapılıp, bırakılacak şekilde üretilmektedir. Ayar için tornavida kullanılır. Bu türdeki potansiyometreye "Trimmer potansiyometre" (Trimpot) denmektedir.
        A: Lineer potansiyometre çıkış gerilimindeki değişim
        B: Logaritmik potansiyometre çıkış gerilimindeki değişim

        Şekil'de gösterilmiş olduğu gibi karbon potansiyometreler. Lineer (doğrusal) veya logaritmik (eğrisel) gerilim ayarı yapacak şekilde üretilir. Şeklin köşesinde karakteristik eğrileri çıkarılan potansiyometre görülmektedir. Yatay koordinat ekseni, potansiyometre fırçasının "a" ucuna göre dönüş açısını, gösteriyor. Düşey koordinat ekseni ise, a-s uçlarından alınan Vas geriliminin , a-e uçları arasındaki Vae gerilimine oranını (Vas/Vae) göstermektedir. Aynı şeyleri direnç değerleri üzerinde de söylemek mümkündür. Şekilde, noktalı olarak çizilmiş olan A doğrusu, lineer (doğrusal) potansiyometreye, B eğrisi ise logaritmik potansiyometreye aittir. Potansiyometre fırçası "a" ucunda iken Vas çıkış gerilimi sıfır 'dır. Fırçanın 90° döndürülmüş olduğunu kabul edelim: Potansiyometre lineer ise; Vas = 32/100*Vae = 0,32Vae olur. Potansiyometre logaritmik ise; Vas = 8/100*Vae = 0,08Vae olur. Yükselteçlerde volüm ve ton kontrolünde logaritmik potansiyometrelerin kullanılması uygun olur. Dirençlerin hangi türden olduğunun anlaşılmasını sağlamak için, omaj değerinden sonra "lin" veya "log" kelimeleri yazılır.

      3. Telli potansiyometreler
      4. Telli potansiyometreler, bir yalıtkan çember üzerine sarılan teller ile bağlantı kuran fırça düzeninden oluşmaktadır. Bu tür potansiyometrelerin üzeri genellikle açıktır. Tel olarak Nikel-Krom veya başka rezistans telleri kullanılır.

      5. Vidalı potansiyometreler
      6. Vidalı potansiyometrede, sonsuz vida ile oluşturulan direnci taramaktadır. Üzerinde hareket eden bir fırça, kalın film (Cermet) yöntemiyle oluşturulan direnci taramaktadır. Fırça potansiyometrenin orta ayağına bağlıdır. Böylece orta ayak üzerinden istenilen değerde ve çok hassas ayarlanabilen bir çıkış alınabilir.


Standart direnç renk kodları

Dirençlerin değer ve toleransları büyük çoğunlukla üzerlerine çizilen renk şeritleri ile belirtilir. Renk kodlarını okumak için şu formül uygulanır:

Ohm Kanunu

İki uçlu bir devre elemanının direnci, üzerindeki gerilimin (V), üzerinden geçen akıma (I) bölünmesiyle hesaplanır.
V=I.R – R=V/I – I=V/R
1000 Ohm = 1 Kiloohm
1000 Kiloohm = 1 Megaohm

Dirençlerin seri bağlanması

Dirençler seri bağlanırsa toplam direnç, serideki tüm direnç değerlerinin toplamıdır. Aynı şekilde gerilim de tüm değerlerin toplamıdır. Seri bağlantıda elemanlar üzerinden geçen akım aynıdır.
R = R1+ R2 + R3
V = V1 + V2 + V3
I = I1 = I2 = I3

Dirençlerin Paralel Bağlanması

Dirençlerin uçları aynı noktaya bağlandığından dolayı her bir direncin uçları arasındaki potansiyel farklar birbirine eşit olacaktır. Gerilim ise eşit olacaktır: V = V1 = V2 Kollardan geçen akım şiddetleri toplamı ana koldan geçen akım şiddetine eşittir: I = I1 + I2 Dirençler hem seri hem paralel olarak bağlanırsa öncelikle kendi aralarında hesaplanır, sonrasında ise seri bağlanmışlar gibi hesap yapılır.

Hiç yorum yok:

Yorum Gönder

Popüler Yayınlar

Popüler Yayınlar